Chemistry 2

Lecture 3 Particle on a ring approximation

Learning outcomes from Lecture 2

- Be able to explain why confining a particle to a box leads to quantization of its energy levels
- Be able to explain why the lowest energy of the particle in a box is not zero
- Be able to apply the particle in a box approximation as a model for the electronic structure of a conjugated molecule (given equation for E_n).

Assumed knowledge for today

Be able to predict the number of π electrons and the presence of conjugation in a ring containing carbon and/or heteroatoms such as nitrogen and oxygen.

The de Broglie Approach

 The wavelength of the wave associated with a particle is related to its momentum:

$$p = mv = h / \lambda$$

For a particle with only kinetic energy:

$$E = \frac{1}{2} mv^2 = \frac{p^2}{2m} = \frac{h^2}{2m\lambda^2}$$

Particle-on-a-ring

Particle can be anywhere on ring

Ground state is motionless

Particle-on-a-ring

- Ground state is motionless
- In higher levels, we must fit an integer number of waves around the ring

1 wave

2 waves

3 waves

 $\lambda = 2\pi r$

 $\lambda = 2\pi r/2$

 $\lambda = 2\pi r/3$

The Schrödinger equation

- The total energy is extracted by the Hamiltonian operator.
- These are the "observable" energy levels of a quantum particle

The Schrödinger equation

 The Hamiltonian has parts corresponding to Kinetic Energy and Potential Energy. In terms of the angle θ:

$$\hat{H}\Psi = \left(-\frac{\hbar^2}{2mr^2}\frac{\partial^2}{\partial\theta^2} + V(\theta)\right)\Psi$$
Hamiltonian operator

Kinetic Energy

The ring is a cyclic 1d potential

$$\Psi = \sin(j\theta) \quad \Psi = \cos(j\theta)$$
must fit an integer number of wavelengths
$$\theta = \frac{1}{2\pi}$$

 π -system of benzene is like a bunch of electrons on a ring

• On the ring, V = 0. Off the ring $V = \infty$.

$$\Psi = sin(j\theta)$$

$$\hat{H}\Psi = -\frac{\hbar^2}{2mr^2} \frac{\partial^2}{\partial \theta^2} sin(j\theta)$$

$$= \frac{\hbar^2 j^2}{2mr^2} sin(j\theta) = \varepsilon_j \Psi \qquad j = 1, 2, 3....$$

• On the ring, V = 0. Off the ring $V = \infty$.

$$\Psi = cos(j\theta)$$

$$\hat{H}\Psi = -\frac{\hbar^2}{2mr^2} \frac{\partial^2}{\partial \theta^2} cos(j\theta)$$

$$= \frac{\hbar^2 j^2}{2mr^2} cos(j\theta) = \varepsilon_j \Psi \qquad j = 0, 1, 2, 3....$$

Particle-on-a-ring

Ground state is motionless

 Ψ = constant

The ring is a cyclic 1d potential

$$\Psi = \sin(j\theta) \quad \Psi = \cos(j\theta)$$
must fit an integer number of wavelengths
$$\theta = \frac{1}{2\pi}$$

$$\varepsilon_{j} = \frac{\hbar^{2} j^{2}}{2mr^{2}} = \frac{2\pi^{2}\hbar^{2} j^{2}}{mL^{2}}$$
 $j = 0, 1, 2, 3....$

radius of ring

$$j = 0$$

i = 3

All singly degenerate

Doubly degenerate above *j*=0

$$n=4$$

$$n = 3$$

$$n=2$$

$$n = 1$$

 2π

particle on a ring

$$j=0$$

box

Application: benzene

Question: how many π -electrons in benzene?

Answer: Looking at the structure, there are 6 carbon atoms which each contribute one electron each. Therefore, there are 6 electrons.

Question: what is the length over which the π -electrons are delocalized, if the average bond length is 1.40 Å?

Answer: There are six bonds, which equates to $6 \times 1.40 \text{ Å} = 8.40 \text{ Å}$

Question: if the energy levels of the electrons are given by $\varepsilon_n = 2\hbar^2 j^2 \pi^2 / mL^2$, what is the energy of the HOMO in eV?

Answer: since there are 6 π -electrons, and therefore the HOMO must have j=1. We know that L = 6 × 1.40 Å = 8.4 0Å. From these numbers, we get ε_j = 3.41×10⁻¹⁹ j² in Joules. The energy of the HOMO is thus ε_1 = 3.41×10⁻¹⁹J = 2.13 eV.

$$j=2$$

$$j = 1$$

$$j = 0$$

Question: what is the energy of the LUMO, and thus the HOMO-LUMO transition?

j = 3

Answer: $\varepsilon_j = 3.41 \times 10^{-19} \, j^2$ in Joules. The energy of the LUMO is thus $\varepsilon_2 = 1.365 \times 10^{-18} \text{J} = 8.52 \text{ eV}$. The energy of the HOMO-LUMO transition is thus 6.39 eV.

Question: how does the calculated value of the HOMO-LUMO transition compare to experiment?

Answer: The calculated energy of the HOMO-LUMO transition is 6.39 eV. This corresponds to photons of wavelength

 $\lambda = hc/(6.39 \times 1.602 \times 10^{-19}) \sim 194$ nm, which is not so far from the experimental value (around 200 nm).

Hiraya and Shobatake, J. Chem. Phys. 94, 7700 (1991)

Learning Outcomes

- Be able to explain why confining a particle on a ring leads to quantization of its energy levels
- Be able to explain why the lowest energy of the particle on a ring is zero
- Be able to apply the particle on a ring approximation as a model for the electronic structure of a cyclic conjugated molecule (given equation for E_n).

Next lecture

Quantitative molecular orbital theory for beginners

Week 10 tutorials

 Schrödinger equation and molecular orbitals for diatomic molecules

Practice Questions

- 1. The particle on a ring has an infinite number of energy levels (since j = 0, 1, 2, 3, 4, 5 ...) whereas for a ring C_nH_n has only n p-orbitals and so n energy levels.
 - C_6H_6 , for example, only has levels with j=3 (one level), j=1 (two levels), j=2 (two levels) and j=3 (one level)
 - (a) Using the analogy between the particle on a ring waves and the π -orbitals on slide 17, draw the four π molecular orbitals for C₄H₄ and the six π molecular orbitals for C₆H₆
 - (b) Using qualitative arguments (based on the number of nodes and/or the number of in-phase or out-of-phase interactions between neighbours) construct energy level diagrams and label the orbitals as bonding, non-bonding or antibonding
 - (c) Based on your answer to (b), why is C₆H₆ aromatic and C₄H₄ antiaromatic?